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ABSTRACT

It is a well-established empirical fact that the surface density of the star formation rate, ΣSFR,
strongly correlates with the surface density of molecular hydrogen, ΣH2

, at least when averaged over
large (∼ kpc) scales. Much less is known, however, if (and how) the ΣSFR −ΣH2

relation depends on
environmental parameters, such as the metallicity or the UV radiation field in the interstellar medium
(ISM). Furthermore, observations indicate that the scatter in the ΣSFR−ΣH2

relation increases rapidly
with decreasing averaging scale. How the scale-dependent scatter is generated and how one recovers a
tight ∼ kpc scale ΣSFR −ΣH2

relation in the first place is still largely debated. Here, these questions
are explored with hydrodynamical simulations that follow the formation and destruction of H2, include
radiative transfer of UV radiation, and resolve the ISM on ∼ 60 pc scales. We find that within the
considered range of H2 surface densities (10-100 M⊙ pc−2), the ΣSFR − ΣH2

relation is steeper in
environments of low metallicity and/or high radiation fields (compared to the Galaxy), that the star
formation rate (SFR) at a given H2 surface density is larger, and the scatter is increased. Deviations
from a “universal” ΣSFR − ΣH2

relation should be particularly relevant for high-redshift galaxies or
for low-metallicity dwarfs at z ∼ 0. We also find that the use of time-averaged SFRs produces a large,
scale-dependent scatter in the ΣSFR−ΣH2

relation. Given the plethora of observational data expected
from upcoming surveys such as ALMA, the scale-scatter relation may indeed become a valuable tool
for determining the physical mechanisms connecting star formation and H2 formation.
Subject headings: galaxies: evolution — methods: numerical — stars: formation

1. INTRODUCTION

In a seminal paper, Schmidt (1959) constructed a
closed-box model of gas consumption and star forma-
tion that relies on the basic assumption of a polyno-
mial relationship between (total) gas surface density Σgas

and star formation rate surface density ΣSFR. This
model was able to satisfy simultaneously a number of
observational constraints, such as the initial luminos-
ity function of main-sequence stars, the luminosity func-
tion of white dwarfs, or the relatively constant surface
density of atomic hydrogen (HI). While the first stud-
ies focussed on the relation between neutral hydrogen
and SFR (Sanduleak 1969; Hartwick 1971), the com-
bination of measurements of Hα, HI and CO emission
lines allowed for a direct test of the Schmidt relation,
ΣSFR − Σgas, and a precise measurement of its expo-
nent (Kennicutt 1989, 1998b). Initially, it was assumed
that Σgas would determine ΣSFR (e.g., via gravitational
collapse). However, measurements of azimuthally av-
eraged gas and SFR profiles showed that SFRs cor-
relate better with the molecular hydrogen (H2) com-
ponent than with the total gas density (Wong & Blitz
2002; Bigiel et al. 2008). In fact, recent observational
and theoretical works demonstrate that the steepening
of the ΣSFR − Σgas relation at low gas surface densi-
ties coincides with the transition of atomic to molecu-
lar hydrogen (Robertson & Kravtsov 2008; Bigiel et al.
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2008; Krumholz et al. 2009b; Gnedin & Kravtsov 2011).
The shape of the ΣSFR − Σgas relation is also predicted
to evolve strongly with redshift due to the build-up of
metallicity in the interstellar medium (ISM) over cos-
mic history and the importance of dust in the forma-
tion of H2 and its shielding from Lyman-Werner radia-
tion (Krumholz et al. 2009a; Gnedin & Kravtsov 2010).
In contrast, the ΣSFR − ΣH2

relation is often assumed
to evolve little and be relatively insensitive to changes
in metallicity and interstellar radiation field, although
this has not yet been confirmed observationally. The as-
sumption on which this “universality” is based is that
the efficiency with which clouds of molecular hydrogen
convert their H2 into stars is not a strong function of
the average ISM metallicity or the interstellar radiation
field, at least under conditions typical for spiral galaxies
(Krumholz & Tan 2007). The scale at which this conver-
sion takes place is the scale of (giant) molecular clouds,
i.e., 100 pc or less. However, there are a couple of com-
plications. First, there is growing observational evidence
suggesting that the scatter in the ΣSFR−ΣH2

relation in-
creases if one goes to smaller and smaller scales (see, e.g.,
Onodera et al. 2010; Schruba et al. 2010). Taken at face
value, this seems to contradict a tight small-scale cou-
pling between molecular hydrogen surface density and
star formation. Second, the ΣSFR − ΣH2

relation is typ-
ically measured on ∼ kpc scales and the spatial aver-
aging may lead to changes in the slope, intercept and
scatter compared with those on small scales (Kravtsov
2003). Third, observationally determined SFRs are time-
averaged over the effective lifetime of the specific star
formation tracer and may thus differ from instantaneous
SFRs.
A straightforward observational check of the univer-

sality of the ΣSFR − ΣH2
relation is difficult, first and
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TABLE 1
Overview of the simulations discussed in this work.

nc (cm−3) Z/Z⊙ UMW Resolution (pc) No.

50 0.1, 0.3, 1 0.1, 1, 10, 100 65 12

103, 106 1 0.1 65 2

103, 106 0.1 100 65 2

50 1 1 32 1

50 1 1 125 1

Note. — The columns denote: (1) the minimum density of
molecular clouds that form stars nc, see eqution (2), (2) the metal-
licity, (3) the radiation field, (4) the spatial resolution, and (5) the
number of the simulations discussed in this work.

foremost because the direct detection of molecular hy-
drogen is challenging. Tracer molecules such as CO or
HCN are typically used instead to infer the H2 column
density (e.g., Omont 2007). Mapping the line intensity of
tracer molecules to the H2 column density is obfuscated
by the fact that the dependence of the conversion factor
on ISM properties, e.g., metallicity or interstellar radi-
ation field, is not well understood (Glover & Mac Low
2011). In addition, radiative transfer effects need to be
carefully modeled (e.g., Narayanan et al. 2008, 2011).
Numerical simulations offer a different route to study-

ing the ΣSFR − ΣH2
relation. What are their require-

ments? First, the numerical code needs to follow self-
consistently the formation and destruction of H2. This
implies a resolution of 100 pc or better, an implementa-
tion of cooling down to a few tens of Kelvin and, also,
radiative transfer of the Lyman-Werner bands (at least
in some approximate form), in order to correctly capture
the impact of the interstellar radiation field on the H2

dissociation.
Secondly, the code needs a recipe for star formation.

The accumulating evidence in favor of a universal initial
stellar mass function (Bastian et al. 2010) indicates that
star formation on small scales, i.e., within star-forming
clumps and cores within molecular clouds, is largely de-
coupled from the ISM properties on larger scales. In
particular, observations show that the average star for-
mation efficiency per free-fall time is ∼ 0.005−0.01, inde-
pendent of scale, once the densities of molecular clouds
are reached (e.g., Krumholz & Tan 2007, but see also
Murray 2011; Feldmann & Gnedin 2011). A natural ap-
proach is therefore to couple the star formation on scales
of individual molecular clouds directly to the density of
molecular hydrogen, assuming that the formation and
destruction of H2 can be modeled reliably.
Consequently, the approach we use in our simulations

is to relate the SFR to the H2 density on small scales (∼
60 pc) via the following equation (Gnedin et al. 2009):

ρ̇∗ = ǫSFR
ρH
τSFR

fH2
eσX−

1

2
σ2

, (1)

where ρ̇∗ is the instantaneous SFR density, ρH is the
hydrogen mass density, fH2

is the H2 fraction, ǫSFR
and τSFR denote the star formation efficiency and the
star formation time-scale (see equation 2 below), respec-
tively. The exponential factor models intrinsic scatter
with width σ (we discuss intrinsic scatter in §3.2, oth-
erwise we assume σ = 0). X is a Gaussian random

variable with mean 0 and variance 1. The factor e−
1

2
σ2

ensures that the same amount of gas is converted into

stars at a given H2 density independent of the scatter
width σ. This implies, however, that star formation ef-
ficiencies derived from the mean (or median) relation in
the log ρ̇∗ − log ρH2

plane, i.e., for X = 0, differ from the

parameter ǫSFR by the factor e−
1

2
σ2

. This effect should
be considered when, e.g., star formation efficiencies of
scatter-free numerical simulations are calibrated against
observations on sub-kpc scales.
On which grounds would we actually expect to see

any dependence of slope, intercept and scatter of the
ΣSFR−ΣH2

relation on environmental parameters such as
metallicity or interstellar radiation field? The H2 abun-
dance is strongly affected by the amount of dust shielding
from the UV radiation and, consequently, a lower metal-
lically and/or larger radiation field will increase the re-
quired density for H2 (and consequently stars) to form.
We will show that a non-linear relation between nH2

and
the SFR on small scales can have a significant impact on
the slope, intercept, and scatter of the ΣSFR −ΣH2

rela-
tion measured on large (∼ kpc) scales. Another impor-
tant, and so far often neglected quantity, is the scatter in
the ΣSFR−ΣH2

relation. While some scatter may be due
to observational measurement uncertainties, it is clear
that any environmental dependence of the ΣSFR − ΣH2

relation will translate into a galaxy-to-galaxy variation
and, in combined data sets, to scatter. Furthermore, the
observed ΣSFR−ΣH2

relation is measured on large scales
(spatial averaging) using time-averaged SFRs. The aver-
aging may induce a scale-dependence of the scatter.
The layout of the paper is as follows. In §2 we briefly

describe the setup of our numerical experiments. We
then show in §3.1 the predicted dependence of the slope,
intercept, and scatter of the ΣSFR − ΣH2

relation on
metallicity and interstellar radiation field. The scale de-
pendence of the scatter and the propagation of intrinsic
scatter from 100 pc to kpc scales is studied in §3.2. We
discuss our findings in §4 and conclude in §5.

2. SIMULATIONS

A detailed description of the set of performed simu-
lations can be found in Gnedin & Kravtsov (2011). All
simulations are run with the Eulerian hydrodynamics +
N -body code ART (Kravtsov et al. 1997, 2002), which
uses an adaptive mesh refinement (AMR) technique to
achieve high spatial resolution in the regions of inter-
est (here: regions of high baryonic density). First, we
ran an initial cosmological, hydrodynamical simulation
down to z = 4. This simulation follows a Lagrangian re-
gion that encloses five virial radii of a typical L∗ galaxy
(halo mass ∼ 1012 M⊙ at z = 0) within a box of 6 co-
moving Mpc/h. The mass of dark-matter particles in the
high-resolution Lagrangian patch is 1.3×106M⊙ and the
spatial resolution is 65 pc at z = 3 in physical coordi-
nates. We adopt the following cosmological parameters:
Ωmatter = 0.3, ΩΛ = 0.7, h = 0.7, Ωbaryon = 0.043, and
σ8 = 0.9. This initial, fully self-consistent simulation
is consequently continued for additional ∼ 600 Myr be-
fore it is analyzed, but now with metallicities and UV
fields fixed to a specific, spatially uniform value. At this
time, the mass of the simulated halo is ≈ 4.2× 1011 M⊙.
We have run a grid of simulations with three different
metallicities Z = 0.1, 0.3, 1.0 (in units of Z⊙ = 0.02)
and four different values of the interstellar radiation field
UMW = 0.1, 1, 10, 100. The parameter UMW = J/JMW
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specifies the strength of the interstellar radiation field in
units of the radiation field of the Milky Way at 1000Å:
JMW = 106 photons cm−2 s−1 ster−1 eV−1 (Draine 1978;
Mathis et al. 1983). We continued one of our simulations
(Z/Z⊙ = 1, UMW = 1) for additional 400 Myr and found
no significant changes in the ΣSFR − ΣH2

relation. This
indicates that the predictions of our simulations should
also hold for redshifts z . 3, at least unless/until ISM
properties change radically. In total, we ran a set of
18 simulations (including 2 runs for a resolution study)
in order to explore the effect of varying metallicity, ra-
diation field and density threshold on the ΣSFR − ΣH2

relation (see Table 1).
The molecular hydrogen fraction fH2

is computed self-
consistently, including a chemical network comprised of
6 species and radiative transfer of the UV continuum and
the Lyman-Werner bands (Gnedin & Kravtsov 2011). If
the average density in a simulation cell is smaller than
the density typical for molecular clouds, we have to revert
to a ‘subgrid’ interpretation of the H2 fraction. In this
case, we assume that the fraction fH2

corresponds to the
(mass) fraction of hydrogen in individual (unresolved)
molecular clouds.
Consequently, the star formation timescale is given

by the minimum of (1) the free-fall time corresponding
to the average density in the cell and (2) the free-fall
time corresponding to the minimum density of molecu-
lar clouds that form stars nc, i.e.,

τSFR = min[τff(nH), τff(nc)]. (2)

We stress that for densities smaller than nc the relation
between SFR and H2 abundance is linear, while it be-
comes non-linear for larger densities, because τff(nH) ∝
n
−1/2
H . A non-linear steepening of the ΣSFR − ΣH2

rela-
tion at ΣH2

> 100M⊙ pc−2 is motivated by theoretical
studies (e.g., Krumholz et al. 2009b), but not yet con-
firmed by observations. We therefore explore the case in
which nc = 50 cm−3, i.e., close to the typical average
density of molecular clouds (∼ 100−200 cm−3), but also
discuss the possibility of much larger thresholds such as
nc = 103 cm−3 and nc = 106 cm−3. Since our simula-
tions do not capture densities of & 105 cm−3, a threshold
above this value effectively corresponds to a fully linear
SFR - H2 relation on small scales.
Instantaneous SFRs are computed directly using equa-

tions (1) and (2). Our simulations use ǫSFR = 0.005.
This value, which is consistent with small-scale obser-
vations (Krumholz & Tan 2007), ensures that the nor-
malization of the ΣSFR − ΣH2

relation on kpc scales is
similar in simulations and observations. Time-averaged
SFRs (over time T ) are calculated by counting the num-
ber of stars in a cube of given scale with ages below T .
Unless otherwise noted, we use T = 20 Myr, but we have
explicitly checked that our results do not change signifi-
cantly if larger averaging times are used (up to T = 200
Myr). SFR estimates based on observations of UV lumi-
nosities in the wavelength range 1250-2800 Å correspond
to an averaging time of ∼ 100 Myr, which based on neb-
ular emission lines, such as Hα, typically correspond to
T ∼ 10 Myr, and estimates based on the FIR continuum
(e.g., 24 µm) correspond to a range (∼ 10 - 100 Myr) of
averaging time scales; see, e.g., Kennicutt (1998a).
The slope and intercept of the ΣSFR − ΣH2

relation
are obtained with a bisector regression in log-log space

(Isobe et al. 1990). Although the use of bisector regres-
sion cannot be rigorously justified in general (see Kelly
2007; Hogg et al. 2010), the bisector method is sufficient
for our purposes as we perform regression on tightly cor-
related data without error bars. We estimate scatter
about the best-fit relation, as the root mean square of
log10 of the spatially averaged star formation rate den-
sity relative to its value on the regression line with the
same density, see also equation (B1). We estimate errors
for the slope, intercept, and scatter using the standard
bootstrap method (Efron 1979) with a sample size of 200.

3. RESULTS

3.1. Dependence on metallicity and UV field

In Fig. 1 we plot and compare the ΣSFR − ΣH2
re-

lation for (1) solar metallicity and UMW = 0.1, and (2)
Z/Z⊙ = 0.1 and UMW = 100. Measured over the range
10 < ΣH2

/M⊙pc
−2 < 100, the slope of the relation in

case (1) is ∼ 1.14 ± 0.02, the SFR at a surface den-
sity ΣH2

= 10 M⊙ pc−2 is 0.016 M⊙ yr−1 kpc−2 and
the scatter of log10 SFR around the best fit is 0.10 dex.
The slope is slightly steeper than that derived from CO
measurements (∼ 0.96 ± 0.07; Bigiel et al. 2008). As
anticipated, the choice ǫSFR = 0.005 leads to a nor-
malization of the simulated ΣSFR − ΣH2

relation that is
close to what is found in observations, once observational
data are mapped to the same initial stellar mass function
(IMF). In case (2), the slope is significantly steeper ∼ 1.4,
the SFR at a surface density ΣH2

= 10 M⊙ pc−2 higher
(0.023 M⊙ yr−1 kpc−2) and the scatter is larger (0.18
dex).
In Fig. 2 we plot the slope, intercept, and scatter of

the ΣSFR − ΣH2
relation, spatially averaged over 1 kpc,

for a grid of environmental parameters. The figure shows
that the slope, intercept and scatter are systematically
changing as a function of Z and UMW. A bi-parametric
regression (using Z and UMW as independent variables)
captures the change in slope and scatter very well. The
regression parameters are given in the legend of the fig-
ure. A word on the terminology. We refer to the scale at
which equations (1) and (2) are applied as “small scales”
(∼ 60 pc in our simulations). By contrast, we refer to the
scales on which the slope and intercept of the ΣSFR−ΣH2

are measured as “large scales” (∼ kpc in this study). The
spatial density on scale l is given by the amount of mass
within a cube of size l. In order to convert from a spatial
to a surface density, we multiply the spatial density by l.
We do not use the surface density on the smallest (∼ 60
pc) scales in order to avoid underestimating it.
Fig. 2 shows that the use of time-averaged SFRs intro-

duces the dominant amount of scatter in the ΣSFR−ΣH2

relation on large scales. Specifically, as the first two pan-
els in the rightmost column demonstrate, the scatter in
the relation is significantly larger (∼ 0.1 − 0.2 dex) if
SFRs are time averaged, compared with the case that
instantaneous SFRs are used (∼ 0.05− 0.12 dex). Time
averaging creates scatter because H2 surface densities are
measured instantaneously while the SFRs are averaged
over some past time interval.
However, the use of time-averaged SFRs is not the

only source of scatter. The important point to realize
is that equation (1) depends both on the H2 density
(ρH2

= ρHfH2
) and the hydrogen density ρH (via τSFR).

Hence, on small scales, a scatter in the hydrogen den-
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Fig. 1.— ΣSFR − ΣH2
relation on the kpc scale. Left panel: Z = Z⊙, UMW = 0.1. Right panel: Z = 0.1Z⊙, UMW = 100. Stellar and

H2 masses are measured within cubical cells of l = 1 kpc box length. Surface densities are estimated by dividing each mass by l2. SFRs
are averaged over 20 Myr. The simulation results are shown by the red shaded region (two-dimensional histogram of all simulation cells)
and by crosses (a random sample of 50 simulation cells with surface density in the range 10 < ΣH2

/M⊙pc−2 < 100). The solid green line

is the result of a bisector regression of all kpc-sized simulation cells with 10 < ΣH2
/M⊙pc−2 < 100 and 0.01 < SFR/M⊙yr−1kpc−2 < 1.

The regression parameters, slope and intercept, are shown on the top left. Also shown (in parentheses) are the regression errors, estimated
via bootstrapping. The black circles and triangles correspond to the normal spiral and star bursting sample, respectively, of Kennicutt
(1998b). The solid black line is the average ΣSFR −ΣH2

relation found in Bigiel et al. (2008). The ΣSFR −ΣH2
relation in the right panel

has a steeper slope, a higher normalization, and a larger scatter than in the left panel.

sity at fixed H2 density translates into a scatter of SFR
at fixed H2 surface density. The value of the threshold
nc affects this type of scatter in a crucial way. If nc

is very large (much larger than the peak in the mass-
weighted distribution function of molecular hydrogen)
then the SFR does not depend explicitly on ρH (since
τSFR = τff(nc)) and, consequently, no scatter is gener-
ated. Similarly, for hydrogen densities above a certain
limit, let us call it nfm

5, the gas is fully molecular and,
hence, ρH and ρH2

are 1:1 related (see, e.g., Gnedin et al.
2009). If nH > nfm, no scatter is produced on the level
of a single cell, but scatter can still arise on larger scales
as cells with different properties are added. To clarify
this point, let us assume that we add the SFRs and H2

densities from, e.g., two cells A and B. First, let cell A
have a density below nc and cell B a density above nfm.
Second, let us redistribute the hydrogen and H2 masses
such that both cells have a density below nc (this might
not be possible in all cases). Although in both cases the
H2 density is the same, the SFRs are higher in the first
case.
The mechanism that we have just described explains

the existence of scatter, provided nc is sufficiently low
(see the third column of Fig. 2). However, we have not
discussed why there is a trend of scatter with Z and
UMW. The origin of this trend can be understood from
the bottom panels of Fig. 3, where we show a histogram
of the small-scale hydrogen density (H2 mass-weighted)
parametrized by the large-scale H2 surface density. The
figure shows that the fraction of H2 mass that is in cells

5 nfm ∼ 300 cm−3 for UMW = 100, Z/Z⊙ = 0.1 and nfm ∼ 10
cm−3 for UMW = 0.1, Z/Z⊙ = 1.

with hydrogen densities above a given threshold (in the
range of ∼ 10 − 100 cm−3) increases with decreasing Z
and increasing UV. Hence, more of the H2 mass partic-
ipates in producing scatter and the overall scatter in-
creases.
Fig. 2 also shows that there is a dependence of the

intercept of the ΣSFR − ΣH2
relation on Z and UMW,

provided nc is sufficiently small (see the middle panel in
the top and middle rows). How do we understand this
result? As we just pointed out, an increase in the ra-
diation field and/or a decrease in the metallicity shifts
the peak of the mass weighted H2 density distribution
towards higher densities (see the bottom row of Fig. 3).
Specifically, the figure shows that for UMW = 0.1 and
Z/Z⊙ = 1, cells with hydrogen densities in the range
of ∼ 3 − 100 cm−3 contain most of the molecular hy-
drogen for the considered range of H2 surface densities.
Hence, only cells in the range of ∼ 3 − 100 cm−3 con-
tribute significantly to the SFR. On the other hand, if
UMW = 100 and Z/Z⊙ = 0.1, only cells with hydrogen
densities in the range of 100 − 500 cm−3 contribute to
star formation. Hence, a low-metallicity, high UV disk
will only keep “pockets” of H2 in high density regions,
while in a high-metallicity, low UV disk H2 is present
even in much lower density regions. Consequently, for a
given large-scale H2 surface density, more of the H2 sits
at high densities in a low Z, high UV field, galaxy com-
pared to a high Z, low UV field galaxy. Furthermore,
in the regime in which nH > nc and the hydrogen gas is
(close to) fully molecular the SFRs scale as ∝ n1.5

H . This
non linearity then amounts to a higher SFR (and hence
intercept) at fixed large-scale H2 surface density in a low
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Fig. 2.— Dependence of slope, intercept, and scatter on metallicity and interstellar radiation field. The first row shows (from
left to right) the slope, the intercept, and the scatter of the ΣSFR −ΣH2

relation (averaged over kpc scales) as a function of the
radiation field, UMW (x-axis), and for different metallicities (Z/Z⊙ = 1 (black squares), 0.3 (red downward-pointing triangle),
and 0.1 (blue upward-pointing triangle)). SFRs are averaged over 20 Myr and the minimum cloud density is nc = 50 cm−3.
Slope, intercept and scatter are computed from a bisector regression of the ΣSFR − ΣH2

relation as described in the caption of
Fig. 1. To highlight the trends with Z and UMW, we also performed a two-parametric regression of slope, intercept, and scatter
as a function of Z and UMW (regression equation and parameters and the square of the correlation coefficient are shown at the
top of each panel; x1 = log

10
UMW, x2 = log

10
Z). The black, red, and blue solid lines (from bottom to top) show the results

of the bi-parametric regression for the choices Z/Z⊙ = 1, 0.3, and 0.1, respectively. The middle row shows the same quantities
as the top row, but for instantaneous SFRs. The bottom row shows again the same quantities, but for a larger threshold
density nc. Specifically, the filled symbols and lines use instantaneous SFRs and nc = 1000 cm−3, while the empty symbols use
time-averaged SFRs and nc = 1000 cm−3 (small magenta symbols) and nc = 106 cm−3 (large cyan symbols), respectively. We

note that whenever nc > 50 cm−3 the star formation efficiencies are reduced by
√

nc/50 (see equations (1) and (2)) in order to
ensure the correct normalization of the ΣSFR − ΣH2

relation.
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Fig. 3.— Distribution of neutral hydrogen mass (top row) and
H2 mass (bottom row) as a function the small-scale (∼ 60 pc)
hydrogen density nH (ordinate) for several large-scale (1 kpc) H2

surface densities (abscissa). Each vertical (H2 surface density) bin
is normalized to the total mass of neutral hydrogen (top row) or
H2 (bottom row) in the bin. The grade of shading indicates the
mass fraction (on a linear scale). A black pixel contains 100% of
the neutral hydrogen or H2, respectively, in the given H2 surface
density bin; white corresponds to 0%. The left column corresponds
to a galaxy with high metallicity and low radiation field (Z =
Z⊙, UMW = 0.1), while the right column is for a low-metallicity,
high radiation field galaxy (Z = 0.1Z⊙, UMW = 100). Mean and
standard deviation of the density distributions of neutral hydrogen
(top row) or H2 (bottom row) are indicated by green crosses and
error bars. The thin, red horizontal line indicates the threshold
nc = 50 cm−3. The thick, black horizontal line near the bottom of
each panel shows the range over which slope, intercept, and scatter
of the ΣSFR − ΣH2

relation are computed, see Fig. 2.

Z, high UV field, galaxy compared to a high Z, low UV
field galaxy. In other words, the large-scale SFRs depend
not only on the large-scale H2 surface densities, but also
on the distribution function of nH on small scales.
A related mechanism leads to a dependence of the slope

on Z and UMW (left panel in the top and middle rows of
Fig.2). The panels in the top row of Fig. 3 show that
the typical hydrogen densities of cells that contribute
to a given H2 surface density ΣH2

increase with ΣH2
.

This demonstrates that the density structure of disks at
a given H2 surface density changes with metallicity and
radiation field of the ISM. The bottom panels in Fig. 3
show that this trend remains (although somewhat weak-
ened) if the hydrogen density distribution is weighted by
H2 mass. It also shows, that the effect of an increasing
hydrogen density with large-scale H2 surface density is
stronger for a high Z, low UMW galaxy than for a low
Z, high UMW galaxy. However, in the former case, most
of the H2 is in cells with densities nH < nc and conse-
quently the SFR density is still proportional to the total
H2 density, i.e., slope 1. In the latter case, however,
this increase is important. Let us see why. From (1)
and (2) it is clear that the surface density of the SFR
is proportional to

∑

i nH2,in
αi

H,i, where the sum is over

all cells within the given line-of-sight cylinder and α is
either 0 (if nH < nc) or 0.5 (if nH ≥ nc). The H2 sur-
face density is proportional to

∑

i nH2,i. An increase in
the H2 surface density ΣH2

→ γΣH2
can be achieved in

several ways. If the length of the cylinder increases, then
the surface density of the SFR increases proportional to
ΣH2

. If, however, the density structure changes (in the
simplest case via nH → γnH), then the surface density
of the SFR increases by γ1+α (assuming the gas is fully
molecular). Obviously, if α = 0 (as for nH < nc) the
predicted large-scale slope of the ΣSFR−ΣH2

relation is,
as expected, linear. However, it lies between 1 and 1+α
if there is a mix of cells with densities below and above
nc. In addition, if the density distribution changes in a
more complicated manner with ΣH2

, it is also possible
to obtain “rolling” slopes or even large-scale slopes that
are steeper than 1.5. We conclude that the slope of the
ΣSFR −ΣH2

relation on kpc scales can vary and depends
on the H2 density distribution as a function of the large-
scale H2 surface density, see also Kravtsov (2003).
While the time averaging of the SFRs generates most

of the scatter in the ΣSFR − ΣH2
relation, the trends of

slope and scatter with Z and UMW are largely driven
by the non-linear coupling between SFR and H2 density.
This can be clearly seen in the last row of Fig. 2. If nc =
106 cm−3, the slope of the ΣSFR − ΣH2

relation changes
only between 1.03 (Z/Z⊙ = 1, UMW = 0.1) and 1.16
(Z/Z⊙ = 0.1, UMW = 100) and the scatter increases only
from 0.09 dex to 0.12 dex. We discuss the dependence of
the scatter on ISM properties further in the next section.
If SFRs are measured instantaneously and the small-

scale relation between star formation rate density and H2

density is linear (i.e., nc is large), then the slope reduces
to exactly unity, and any dependence of the intercept
on metallicity or radiation field is eliminated and the
scatter vanishes (at least as long as there are no other
sources of scatter, see §3.2). The reason lies in the fact
that spatial averaging (which is a linear operation) over
a linear relation between SFR and H2 density on small
scales results again in a linear ΣSFR − ΣH2

relation on
larger scales.
We conclude that slope, intercept, and scatter of

the ΣSFR − ΣH2
relation averaged on kpc scales can

change systematically with metallicity and radiation
field. While our quantitative predictions likely depend
on the assumed star formation model6 and the model
for H2 formation and shielding the existence of a “non-
universality” of the large-scale ΣSFR − ΣH2

relation is
a rather generic outcome whenever there is a non-linear
relation between SFR and H2 density on small scales.

3.2. Dependence on averaging scale

Observational studies show that the ΣSFR − ΣH2
re-

lation has larger scatter on smaller scales (Verley et al.
2010; Onodera et al. 2010; Danielson et al. 2011).
Specifically, recent observations of CO, Hα, and 24µm
emission in M33 have been used to argue that the
ΣSFR − ΣH2

relation “breaks down” on a scale of ∼ 100
pc. It has been suggested that the drifting of newly
formed star clusters or the difference in evolutionary
stages of molecular clouds / star clusters could be re-
sponsible (Onodera et al. 2010). Given the limited range

6 For instance, as we show in Fig. 2, they vary with nc.
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Fig. 4.— Dependence of the scatter in the ΣSFR − ΣH2
re-

lation on the averaging scale. The scatter in the ΣSFR − ΣH2

relation has been derived assuming either (1) time-averaged SFRs
(20 Myr) and a minimum cloud density of nc = 50 cm−3 (black
squares), (2) time-averaged SFRs and nc = 106 cm−3 (red tri-
angles), or (3) instantaneous SFRs and nc = 50 cm−3 (blue dia-
monds). The scatter is computed with an ordinary least squares
regression of the SFR as a function of H2 surface density in the
range 10 < ΣH2

/M⊙pc−2 < 100. Errors are computed via
bootstrapping. Empty symbols correspond to solar metallicity
and UMW = 0.1, while filled symbols refer to Z = 0.1Z⊙ and
UMW = 100. Simulations with intermediate values of metallicity
and UV field lie in between.

of measured gas surface densities, it is plausible that
this “break-down” is merely a manifestation of a very
large scatter that may arise from a variety of sources. In
Onodera et al. (2010), the studied range of surface den-
sities is approximately 1M⊙pc

−2 < ΣH2
< 10M⊙pc

−2.
By contrast, the average gas surface density of GMC
measured on scales of a few tens of parsec in M33 is
∼ 120M⊙pc

−2 (Rosolowsky et al. 2003), roughly similar
to that found in the Milky Way (Solomon et al. 1987;
Heyer et al. 2009). Hence, H2 gas surface densities be-
low . 10M⊙/pc

2 measured on 100 pc scales must cor-
respond to the outskirts of GMCs, not to GMCs them-
selves. This by itself may be responsible for a substan-
tial fraction of the measured scatter. We, instead, will
focus on a range of 10 times larger H2 surface densities,
namely 10M⊙/pc

2 < ΣH2
< 100M⊙/pc

2 for scales from
kpc down to 100 pc. Instead of aiming at a precise quan-
titative comparison with observations (that are not yet
available), we discuss qualitative predictions of our simu-
lations, their limitations, and the resulting implications.
In Fig. 4 we show the scatter of the ΣSFR − ΣH2

re-
lation as a function of scale from 1 kpc down to ∼ 100
pc. The first thing we notice is that the scatter due to
time-averaging alone (red lines and triangles) increases
with decreasing scale, while the scatter solely due to the
threshold density nc (blue lines and diamonds) remains
roughly scale-independent. The origins of the different
types of scatter have been discussed in the last section.

The figure shows that the scatter on all scales is primarily
caused by the time averaging of the SFR. This is not an
artifact of the particular SFR averaging time used. We
varied the SFR averaging time scales between 20 and
200 Myr and found no substantial change in the amount
of scatter, as long as low SFR outliers (> 3 sigma) are
excluded7.
A straightforward comparison between our predic-

tions and observations (Verley et al. 2010; Onodera et al.
2010; Schruba et al. 2010) is difficult as none of the pub-
lished observations explicitly quantify the scatter as a
function of scale. However, the scatter predicted from
our simulations (∼ 0.4−0.6 dex on ∼ 100 pc, ∼ 0.1−0.3
on ∼ kpc scales) seems to be of similar order as, e.g., the
observed scatter in Fig. 4 of Verley et al. (2010) and the
scatter in Fig. 3 of Schruba et al. (2010). One should
keep in mind though, that the scatter in the literature
may include contributions from observational uncertain-
ties. Also, the standard deviation in Verley et al. (2010)
is computed on iteratively sigma-clipped data, which
likely underestimates the scatter. Even more problem-
atic is that all mentioned observational studies derive H2

masses from CO measurements, which may introduce ad-
ditional scatter. A detailed modeling of the H2-CO con-
version factor which would be required for a fair compar-
ison is beyond the scope of this paper.
Fig. 4 also shows that the scatter due to the SFR time

averaging depends to a small extent on UMW and Z.
This result can be rephrased in terms of a duty frac-
tion, which we define as the fraction of time (the rele-
vant time scale is the SFR averaging time) during which
the H2 density within the considered cell is close to its
time-averaged value. A duty fraction of unity does not
introduce scatter on small scales, as it means that within
the SFR averaging time the H2 content within the cell
remains constant. Fig. 4 then shows that the duty frac-
tion decreases with increasing radiation field/decreasing
metallicity, hence leading to larger scatter. One interpre-
tation of the reduced duty fraction is that stronger UMW

and/or lower Z reduce the life times of molecular clouds.
An alternative possibility is that molecular clouds live as
long as before, but molecular cloud formation is rarer.
Another potential contributor to the scatter on small

scales is the velocity spread of young stellar clusters and
the stars within the cluster. This effect is not modeled
adequately in the simulation because we do not resolve
individual cluster members, but rather obtain one ‘star
particle’ for each cluster that initially moves with the
average velocity of the gas. On scales & 100 pc this
effect plays only a small role presumably, as the typical
distance that stars travel within 20 Myr is of the order
of ∼ 100 pc (assuming an rms velocity of ∼ 5 km s−1).
Some scatter on large scales may arise from high-velocity
run-away stars (Blaauw 1961; Stone 1991).
The decline of the scatter with increasing averaging

scale is obviously related to the spatial averaging over a
larger number of resolution elements Nres. Naively, we
would expect a scaling proportional to 1/

√
Nres, where

Nres ∝ l3 if the H2 is filling the volume relatively uni-
formly, or ∝ l2 if the H2 is confined to a disk. However,
the scale dependence shown in Fig. 4 seems to be much

7 If not excluded, these outliers do increase the scatter somewhat
(by ∼ 0.1 dex) when averaging over 200 Myr instead of 20 Myr.
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Fig. 5.— Propagation of scatter in the ΣSFR−ΣH2
relation from

small to large scales. A scatter in log10(SFR[M⊙yr−1]) of (from
bottom to top) 0.1 (blue lines), 0.25 (cyan lines), 0.5 (magenta
lines), and 1 (red lines) is inserted at the resolution scale (65 pc) of
the simulation. The black line at the bottom shows a power law:
scatter ∝ scale−0.5. The scatter in the ΣSFR − ΣH2

relation is

measured in the range 10 < ΣH2
/M⊙pc−2 < 100. Instantaneous

SFRs and a minimum cloud density of 106 cm−3 are used in order
to suppress other sources of scatter. Filled (empty) symbols corre-
spond to the simulation with Z = 0.1Z⊙, UMW = 100 (Z = Z⊙,
UMW = 0.1).

shallower.
In order to understand this better, we now include a

log-normal (intrinsic) scatter of the SFRs8 in equation
(1), with σ/ ln 10 ranging from 0.1 to 1 dex on the 65
pc scale. Fig. 5 shows that this scatter decreases with
increasing averaging scale roughly as a power law σl ∝
l−α with exponent α ≈ 0.5.
As we discuss in more detail in Appendix B the rather

gradual decline is caused by both the finite width σρ

of the H2 density distribution and the geometrical ar-
rangement of the molecular hydrogen. In particular, we
find that a sensible value σρ ≈ 1.5 (McKee & Ostriker
2007) and a two-dimensional (2D, disk) arrangement of
the molecular hydrogen naturally leads to α ≈ 0.5. On
the other hand, a purely one-dimensional (1D) arrange-
ment of the H2 is only consistent with α ≈ 0.5 if the
width in the density distribution is very small (≪ 1),
while a three-dimensional (3D) configuration would re-
quire σρ ≈ 2.5. We have also tested that the exponent
decreases if the inserted intrinsic scatter becomes large,
i.e., σ ≫ 1. In fact, the top curves (σ = 2.3) in Fig. 5
clearly show this flattening. Since the H2 density dis-
tribution depends on the metallicity and radiation field
(see Fig. 2), α should depend on it, too. With the data

8 In the remainder of this section we refer to instantaneous SFRs.

points shown in Fig. 5, we obtain α = 0.52 ± 0.04 for
Z = 0.1, UMW = 100, and α = 0.43 ± 0.04 for Z = 1,
UMW = 0.1.
Let us now consider the case in which a scatter σ̃l is

inserted on scale l (we assume a set of discrete scales that
change by a factor 2). If the different scatter contribu-
tions add in quadrature, the total scatter σl on a given
scale l is simply given by

σ2
l = σ̃2

l +
1

22α
σ̃2
l/2 +

1

42α
σ̃2
l/4 + . . . (3)

= σ̃2
l +

1

22α
σ2
l/2. (4)

With knowledge of α, this equation allows the compu-
tation of the amount of scatter σ̃l that is introduced on
scale l from the measurement of the scatter on scales
l and l/2. Presumably, different physical mechanisms
may introduce different amounts of scatter on different
scales. Studying the scale dependence of the scatter may
therefore be helpful to uncover the responsible physical
mechanism(s).

4. DISCUSSION

The scatter in the ΣSFR −ΣH2
relation on the scale of

∼ 100 pc has been attributed to the evolution of molec-
ular clouds over their life time (see, e.g., Onodera et al.
2010; Schruba et al. 2010). In this picture, young molec-
ular clouds have not yet formed stars, but contain
large amounts of H2 and hence fall “below” the aver-
age ΣSFR−ΣH2

relation. On the other hand, clouds that
are near the end of their lives are heavily star forming
and/or have lost some fraction of their molecular hy-
drogen, hence they lie “above” the relation. This picture
cannot be reconciled with an H2-based star formation law
of the form of equation (1) as long as the gas consump-
tion time scale τSFR/ǫSFR is treated as a constant. Hence,
this explanation of the scatter in the ΣSFR − ΣH2

rela-
tion implies that ǫSFR/τSFR has to be a time-dependent
quantity. If τSFR is approximately constant, then the
star formation efficiency will need to change over the life
time of a molecular cloud (e.g., Murray 2011, but see
Feldmann & Gnedin 2011).
Our interpretation is different. We show that a large

amount of scatter in the ΣSFR −ΣH2
relation can be ex-

plained by the fact that observations do not measure the
instantaneous rate of star formation, but rather the num-
ber of stars that formed within a finite time interval in
the past. Our numerical models predict that the scatter
seen on scales of ∼ 100 pc should be small (. 0.1 dex) if
SFRs are measured instantaneously. By contrast, if the
scatter in the relation is mainly due to an evolving star
formation efficiency, the scatter on 100 pc scales should
not be strongly diminished if (close to) instantaneous
SFRs are used.
We note that the particular small-scale model of star

formation used in our simulations is based directly on
the H2 density (equation 1). Although this model has
been motivated analytically (Krumholz et al. 2009b) and
is widely used in numerical simulations (Gnedin et al.
2009) or, more recently, semi-analytic models (Fu et al.
2010), it is important to verify how accurately it de-
scribes reality. A potential shortcoming of equation (1)
is that it assumes that a fixed mass fraction of molecu-
lar hydrogen is available/eligible for star formation. It
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has been known for a while now that star formation in
molecular clouds occurs preferentially in the region of
high gas density (n & 104 cm−3, see e.g., Lada 1992;
Gao & Solomon 2004; Lada et al. 2010). Hence, the SFR
should be strongly dependent on the density probability
distribution function (pdf) of the gas and not necessarily
on the total mass of molecular hydrogen alone.
The density pdf can be expected to depend on details

of gas thermodynamics or potential feedback mechanisms
(e.g., Wada & Norman 2001; Robertson & Kravtsov
2008), even in a picture in which the turbulence in the
ISM is mainly driven by large-scale gravitational mo-
tions (e.g., Wada & Norman 2001; Tasker & Tan 2009).
Hence, if the SFR is in fact regulated by the amount of
high-density gas (and not by H2), we can expect to see
differences in the SFR on ∼ kpc patches as a function of
Z and UMW, even for the same star formation prescrip-
tion on small scales.
In addition, the total amount of H2 may depend on Z

and UMW. For instance, the total amount of H2 in the
simulated volume changes by a factor of ∼ 2 − 3 when
metallicities and radiation fields are varied in the range
Z/Z⊙ = 0.1−1 and UMW = 0.1−100. This change in the
H2 mass alone should induce a galaxy-by-galaxy scatter
on the order of ∼ 0.2 dex. A study of the scatter of the
ΣSFR−ΣH2

relation as a function of scale and in regions
with different metallicities and UV radiation fields may
thus give us, at least in principle, a means to test this
picture.

5. CONCLUSIONS

5.1. The scatter in the ΣSFR − ΣH2
relation

Our simulations identify and quantify two important
sources of scatter. The first type of scatter is only present
if the small-scale star formation relation is non linear and
arises due to the scatter in the H2 density at fixed gas
density. This scatter is relatively independent of spatial
scale and amounts to (at most) ∼ 0.1 dex. The second
type of scatter is due to the fact that observations of H2

(or CO), which measure the instantaneous gas surface
density, are combined with measurements of SFRs that
are averaged over the past tens of megayears. This scat-
ter does not strongly depend on the averaging timescale
provided it is longer than both the H2 formation and de-
struction time, i.e., it exceeds ∼ 10 Myr9. For shorter av-
eraging times, the scatter should decrease and will even-
tually be dominated by other scatter sources. This type
of scatter is strongly dependent on spatial scale. It varies
between ∼ 0.1− 0.2 dex (in log10SFR) on kpc scales and
∼ 0.4− 0.6 dex on ∼ 100 pc scales.
Our numerical experiments predict that intrinsic scat-

ter scales with averaging scale l approximately as∝ l−0.5.
This relatively shallow scaling is primarily caused by the
finite width of the H2 density distribution and the ar-
rangement of the molecular hydrogen in a 2-D (disk)
configuration.
We note that our simulations provide only a lower limit

on the expected scatter as a function of scale, because
some sources of scatter (e.g., the velocity dispersion of
star clusters and their member stars, or scatter in the

9 Assuming typical conditions nH ∼ 50 cm−3, T ∼ 80 K of
the cold neutral medium and tH2

= nH/ṅH2
= 1/(Rd nH) with

Rd = 6× 10−18 T 1/2 cm3 s−1 n2

H
(Draine & Bertoldi 1996).

CO to H2 conversion) are not included in our numeri-
cal modeling. A precise observational determination of
the scatter-scale relation, possibly even as a function of
ISM environment, and the comparison with theoretical
predictions, such as the one presented in this paper, may
thus help to identify the physical processes responsible
for creating the scatter. Consequently, we argue that
the scale dependence of the scatter in the ΣSFR − ΣH2

relation could become an important diagnostic tool in
determining the underlying connection between star for-
mation and H2 density.

5.2. The environmental variation of the ΣSFR − ΣH2

relation

We have shown that even if the SFR is tightly cou-
pled to the H2 density on small scales (see equation 1),
the ΣSFR − ΣH2

relation can vary systematically with
metallicity and interstellar radiation field in the studied
surface density range 10 < ΣH2

/M⊙pc
−2 < 100, when

averaged on ∼ kpc scales.
In particular, the super-linear slope of the ΣSFR−ΣH2

relation depends on the actual H2 density distribution
and on the existence of a non-linear scaling between SFR
and H2 density. The underlying reason for a slope steeper
than unity is that the peak of the H2 density distribution
changes systematically with large-scale surface density.
At larger ∼ kpc averaged surface densities, more of the
molecular gas sits at higher densities, which, due to the
non-linear scaling between SFR and density, leads to the
super linear steepening of the ΣSFR − ΣH2

relation.
Similarly, the systematic change in the slope with

metallicity of the ISM and the interstellar radiation field
is a reflection of the change in the H2 density distribution.
For example, in a low metallicity and/or strong radiation
field environment, the HI to H2 transition takes places at
significantly higher densities and, consequently, a larger
fraction of the H2 mass contributes super-linearly to the
SFR. In addition, this implies more star formation at a
given H2 surface density and hence changes the intercept
of the ΣSFR − ΣH2

relation.
The scatter in the ΣSFR − ΣH2

relation also shows a
systematic trend with Z and UMW. The precise value
of the scatter and the amount it changes with Z and
UMW depends on (1) the assumed density threshold, nc,
above which the SFR scales super-linearly with density,
and (2) amount of time over which observed SFRs are
time averaged. The scatter varies between ∼ 0.05 dex
(Z/Z⊙ = 1, UMW = 0.1) and ∼ 0.12 dex (Z/Z⊙ = 0.1,
UMW = 100) if nc = 50 cm−3 and SFRs are measured
instantaneously. The trend with Z and UMW is mainly
caused by changes in the H2 and total hydrogen density
distributions. On the other hand, if nc is large (& 104

cm−3) and the scatter is generated by the time averaging,
then the scatter changes only weakly with Z and UMW

(∼ 0.09 dex versus ∼ 0.13 dex).
We note that in order to observe a significant change in

the ΣSFR−ΣH2
relation, metallicities ≤ 0.3Z⊙ and inter-

stellar UV fields UMW ≥ 10 are required. Star-forming
galaxies at high redshifts should therefore be the natural
candidates to test our predictions.
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Fig. A1.— Scale dependence of the scatter of the ΣSFR − ΣH2
relation as in Fig. 4, but now for three different spatial resolutions: 125

pc (blue triangles), 65 pc (black squares), and 32 pc (red diamonds). Empty and filled symbols show the scatter due to a low nc and SFR
averaging, respectively.
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APPENDIX

RESOLUTION STUDY

In order to test for possible resolution effects we have rerun one of our simulations (Z = 1 and UMW = 1) at two
times better (32 pc) and also two times worse (125 pc) spatial resolution. We show in Fig. A1 the scale dependence
of the scatter in the ΣSFR − ΣH2

relation for the three different resolutions (32, 65, 125 pc). As in Fig. 4, we present
both the scatter (1) due to SFR time averaging (using a high nc) and (2) due to the non-linear scaling between SFRs
and H2 density (using instantaneous SFR). We find that the amount of scatter as a function of scale is similar in each
of the three simulations and that there is no apparent significant systematic trend with resolution.

DEPENDENCE OF THE SCATTER ON SPATIAL AVERAGING SCALE

As discussed in section 3.2, the scatter in the ΣSFR − ΣH2
relation decreases rather slowly (∝ l−0.5) with averaging

scale l, much slower than expected from a V −0.5 scaling, unless the gas is arranged in a 1D configuration. The scatter
σl in the ΣSFR − ΣH2

relation can be formally written as

σ2
l = 〈(log10 ρ̇∗ − 〈log10 ρ̇∗〉)2〉, (B1)

where ρ̇∗ = 1
V

∫

dxρ̇∗(x) is the spatial average of the star formation rate density and the brackets 〈. . .〉 denote the

ensemble average at fixed spatially averaged H2 density ρ = 1
V

∫

dxρ(x).
The star formation rate density ρ̇∗ is a random field and its value for a given point in space is defined by equation

(1), i.e.,

ρ̇∗ ∝ ρ eσX , (B2)

where ρ ≡ ρH2
and we assume that ρ̇∗ is proportional to the H2 density, i.e., τSFR is a constant. Here X is a Gaussian

random field with zero mean and unit variance.
From equations (B1) and (B2), it follows that σl = σ/ ln 10 on the scatter insertion scale lmin, i.e., without spatial
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Fig. B1.— Scatter σl of the ΣSFR − ΣH2
relation as a function of the averaging scale l for different widths of the log-normal density

distribution σρ and different geometrical arrangements of the molecular hydrogen. The dot-dashed and solid lines show the result of a
simple numerical experiment (see text), in which a spatially uncorrelated scatter with σlmin

= 0.5 is inserted on the scale of lmin = 100 pc
and consequently spatially averaged on larger and larger scales. The dot-dashed lines correspond to σρ = 0.1 in three (blue, bottom) and
one (magenta, top) dimensions, respectively. The red solid lines shows the result for a 2D gas configuration with σρ = 0.1 (lower line) and
σρ = 1.5 (upper line). Dashed lines (black) indicate the scaling ∝ l−0.5, ∝ l−1, and ∝ l−1.5 (from top to bottom) and are shown to guide
the eye.

averaging. The reason being that, in this case, ρ̇∗ = ρ̇∗, ρ = ρ, 〈log10 ρ〉 = log10 ρ and thus

σ2
lmin

=

〈

(

log10(ǫρ) +
σX

ln 10
− 〈log10(ǫρ)〉 −

〈

σX

ln 10

〉)2
〉

(B3)

=

〈

(

log10 ρ+
σX

ln 10
− 〈log10 ρ〉

)2
〉

(B4)

=

〈

(

σX

ln 10

)2
〉

=
( σ

ln 10

)2

. (B5)

Equation (B1) can be solved if all cells have the same density ρ0 and σ ≪ 1. In this case ǫρ eσX = ǫρ0eσX ,

log10 e
σX ≈ σX , and

σ2
l = 〈(log10(eσX)− 〈log10(eσX)〉)2〉 (B6)

=
( σ

ln 10

)2

〈X2〉. (B7)

If X is spatially uncorrelated then 〈X(x)X(y)〉 = δ(x− y), 〈X2〉 = 1/V , and σl ∝ V −0.5.
However, the scaling of σl may be different if X is spatially correlated, σ ≫ 1, or if the density pdf is not sharply

peaked. We can test whether the latter, i.e., the finite width of a log-normal density distribution, provides a quantitative
explanation for the scaling of σl. To this end, we insert spatially uncorrelated scatter with σlmin

= 0.5 on the scale
of 100 pc and compute σl as a function of averaging scale for log-normal density distributions of various widths σρ

and for a 1D, 2D and 3D configuration of H2. Specifically, for each scale l we first generate (l/lmin)
d independent

density values (d is the assumed dimensionality of the gas configuration) drawn from a log-normal distribution with
width σρ and the same number of corresponding star formation rate density values according to equation (B2). We
then compute the average H2 density and SFR over the (l/lmin)

d “cells”. This pair of spatially averaged H2 density
and star formation rate density constitutes a data point in the ΣSFR − ΣH2

relation and the scatter of the relation is
computed from 1000 data points generated in this way.
Fig. B1 shows that if σρ is sufficiently small (≪ 1), σl scales as V −0.5 as anticipated. Supersonic turbulence

simulations, however, predict σρ = ln(1 + β2M2)1/2 with M ∼ 5 − 10 and β ∼ 0.25− 0.5 (McKee & Ostriker 2007).
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Thus, σρ ≈ 1.5 is a more reasonable assumption. In this case, σl scales approximately ∝ l−0.5 if the gas is arranged in
a disk.
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